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Chapter 3
Seed Germination: Explicit Crosstalk 
Between Hormones and ROS

Arkajo Majumdar and Rup Kumar Kar

Abstract Life cycle of a plant (spermatophyte) sets off by germination of seeds 
that virtually transfer successfully genetic information from parents to off-springs 
across adverse environmental conditions. Considering the pivotal roles played by 
both hormones and ROS (especially H2O2 and ˙OH radical) during seed germina-
tion, it appears most likely that they function in a coordinated manner having one or 
more signaling cross-talks. Overwhelming evidences embossed the process of ger-
mination diligently controlled by GA-ABA balance; ROS probably being proactive 
in this event by modulating their metabolism. Ethylene can also be accommodated 
in this network of regulation, again, through ROS intervention. On the other hand, 
involvement of PM H+-ATPase in germination is also documented over time. 
Interestingly, both ROS and phytohormones (e.g. IAA, ethylene) have been reported 
to modulate PM H+-ATPase activity. Based on its activity of energy-driven transport 
of H+ across the PM, the H+-ATPase activates cell wall loosening enzymes and pro-
teins like expansins in the context of a redox milieu maintained primarily by 
NADPH oxidase activity. Nitric Oxide (˙NO), another potential candidate to play a 
role in signaling, has been documented to regulate seed germination through modu-
lation of hormonal metabolism in a ROS-mediated way. In this chapter, the probable 
signaling cross-talks among ROS and hormones during seed germination have been 
discussed with a special emphasis on the role PM H+-ATPase and ˙NO.
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3.1  Introduction

From the earliest simple life forms long course of evolution, in compliance with the 
changing environment, led to the emergence of complex multicellular organisms 
having structurally and functionally distinct parts or organs to survive the chal-
lenges of habitat. Gradual development of such architectural complexity in terms of 
cellular and tissue patterning calls for subtle coordination and communication 
between cells and tissues, a concept that was envisaged long back by German bota-
nist Julius von Sachs (1832–1897) breeding to the idea of chemical messengers 
(Kucera et al. 2005; Taiz et al. 2015). Thus in higher plants well-regulated growth 
and development, based on harmonized functioning of cells and tissues of different 
organs, is possible with the involvement of such chemical messengers, aptly called 
hormones (Weyers and Paterson 2001).

Plant hormones, analogous to animal hormones, act at extremely low concentra-
tion and often transported away from their site of synthesis to target tissues; but, 
unlike animal hormones, these are unexpectedly simple molecules, e.g. ethylene, an 
olefin of molecular weight 28 only (Gray 2004; Davies 2010). Moreover, although 
functional similarities exist between animal and plant steroidal hormones 
(Brassinosteroids), their respective perception and signal transduction mechanisms 
are completely different (Thummel and Chory 2002; Lozano-Elena et  al. 2018). 
Parallel to the discovery of auxins as the first class of plant hormones rigorous 
research by the plant physiologists of several countries established other classes of 
hormones that too have important role in plant growth and development and this list 
is still growing (Taiz et  al. 2015). All these hormones act as signaling agents 
throughout the plant body, from root tip to the leaves, and throughout the life cycle, 
right from seed germination to senescence (Weyers and Paterson 2001; Shu et al. 
2016). Apart from intrinsic regulation, some of these hormones also mediate 
responses to external oscillating environment. These messenger molecules are syn-
thesized by most of the plant cells with differential capacity and, interestingly, func-
tion through both local [paracrine e.g. Brassinosteroid (Lozano-Elena et al. 2018) or 
autocrine e.g. GA (Arteca 1996)] and long distance [endocrine e.g. cytokinin (Kudo 
et al. 2010)] signaling pathways. Both ABA and cytokinin demonstrate combination 
of local and long distance signaling systems (Wasilewska et al. 2008; Wang and 
Irving 2011). Thus, plant hormones do not strictly adhere to the characteristics of 
hormones in mammalian sense i.e. transported chemical messengers (Davies 2010).

3.2  Seed Germination: First Sign of Perceptible Growth 
and Hormonal Interplay

Seed is a very unique structure having independent existence, but a part of it 
(embryo) is finally transformed into a plant. Germination of a seed marks the earli-
est event of growth that initiates in the metabolically hyperactive embryo (or 
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embryonic axis) following a resting stage (Bewley 1997; Weitbrecht et al. 2011). 
Right from this stage hormones take over the control of well programmed develop-
mental processes. However, truly speaking, hormones, particularly auxin and GA, 
set to work in cellular orientation of the axial embryo that already started growing, 
even before germination, following fertilization inside the developing seed, which 
is practically bridging two generations successfully transferring genetic informa-
tion. During this seed maturation phase, when the seed is still attached with the 
mother plant, embryonic development is regulated by hormones from dual source – 
maternal and own. Although rapid growth of the embryonic axis occurs during the 
early stage of seed maturation under the guidance of set of hormones, when auxin 
is playing the pivotal role towards polarity, late stage of development is dominated 
by ABA and characterized by arrested growth and metabolism followed by dehy-
dration (except viviparous seeds) entering into a resting break awaiting germination 
marked by a fresh spurt of growth.

New generation for a plant starts with the seed germination that passes through a 
set of complex developmental changes under the strict guidance of hormones. 
Quiescent seeds germinate upon receiving favorable conditions encompassing light, 
ambient temperature, oxygen and water. In case of dormant seeds, however, process 
of germination is suspended until receiving some extrinsic cue or after-ripening 
(endogenous). As orthodox seeds undergo maturation desiccation and generally 
contains less than 5–15% water by weight, rapid uptake of water (imbibition) ensues 
at the very commencement of germination (Bewley 1997; Weitbrecht et al. 2011). 
During this rehydration phase cellular structures are rebuilt with integrated mem-
brane system with gradual water saturation. Along with, activities like respiration, 
protein and nucleic acid synthesis and other metabolic processes resume, either 
parallel or one by one to flag off embryonic growth. Strictly speaking, germination 
starts with imbibition and culminates in the protrusion of radicle through testa, radi-
cle growth being relied mostly upon cell extension, not cell division (Barroco et al. 
2005; Kucera et al. 2005).

Plant hormones that play a definite role in this earliest event of growth are most 
likely to influence the expression of several genes associated with seed germination 
process. Among the hormones, GA-ABA conflict is a well-known issue in this con-
nection that has been dealt with seed biologists through ages (Taiz and Zeiger 2010). 
Most convincing evidence came up with elegant experiments done with mutants 
leading to the firm concept that GA and ABA act antagonistically- GA releases 
dormancy and promotes germination whereas ABA inhibits germination and main-
tains dormancy (Koornneef et  al. 1982; Bentsink and Kooenneef 2002). In fact, 
ABA-GA balance behind dormancy/germination is a result of positive feedback 
loop involving transcription factors and DELLA proteins (Piskurewicz et al. 2008). 
Thus environmental factors influencing germination, like light (photoblastism) and 
cold temperature (stratification), act through modulation of GA metabolism and GA 
response (Sawada et al. 2008; Seo et al. 2009; Lee et al. 2018). Further studies also 
revealed the roles of other hormones, like ethylene, jasmonates, brassinosteroids 
and auxin (Taiz and Zeiger 2010; Linkies and Leubner-Metzger 2012; Shu et al. 
2016) indicating for a complex signaling network with the possibility of crosstalk at 
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several points that finally control the ‘commitment to growth of the next generation’ 
(Taiz and Zeiger 2010).

Storage mobilization, often considered as a part of germination process, is prac-
tically an event subsequent to germination proper, whereby reserve polymers in the 
storage organs (endosperm or cotyledons) are hydrolysed to provide soluble sub-
strates for embryonic growth. Most popularly studied material is barley endosperm, 
a classical model system, with its outer aleurone layer that secretes hydrolytic 
enzymes (dominated by α-amylase) to the non-living starch grain loaded thin walled 
cells of endosperm. Storage mobilization thus results from synthesis of hydrolytic 
enzymes, α-amylase as an example, and their subsequent secretion, both of which 
are conducted by GA that reaches the aleurone layer through diffusion after being 
synthesized by the growing embryo. Further molecular biological approaches eluci-
dated GA action towards α-amylase synthesis and secretion in great details. Binding 
of GA with its receptor (possibly GID1 protein) results in ubiquitin-26S proteasome 
mediated degradation of downstream DELLA protein, which encourages up- 
regulation of a transcription factor (GA-MYB) that promotes α-amylase gene 
expression through binding with GA response elements, GARE (Gocal et al. 2001; 
Ueguchi-Tanaka et al. 2005; Xia et al. 2015). ABA, an antagonist of GA action, can 
block GA-induced α-amylase synthesis directly by repressing GA-regulated genes 
(Hoecker et al. 1995) and indirectly by repressing GA-MYB expression (Gómez- 
Cadenas et al. 2001).

3.3  ROS, an Inevitable Player – Signaling and/or Direct 
Action in Growth

For a long period, reactive oxygen species (ROS) have been traditionally considered 
as cytotoxic agents that cause oxidative damage of lipids, DNA and protein ulti-
mately leading towards cell death (Garg and Manchanda 2009). However, extensive 
research over the last few decades has brought about a paradigm shift in outlook of 
plant redox biology studies, particularly exploring the monumental beneficial roles 
of ROS in plant life (Kocsy et al. 2013; Singh et al. 2016). Among the most studied 
varieties of ROS viz. superoxide radical (O2˙ˉ), hydroxyl radical (˙OH), hydrogen 
peroxide (H2O2) and singlet oxygen (1O2), H2O2 is the most stable one (half-life of 
1 ms; Bienert et al. 2006) whereas ̇ OH is regarded as the most reactive form (cleaves 
wall polysaccharides; Schweikert et al. 2000). Numerous plant processes ranging 
from momentary phenomena e.g. chloroplast movements (Majumdar and Kar 2016, 
2020) to plastic developmental events e.g. root growth (Gapper and Dolan 2006; 
Tsukagoshi 2016) have been identified to be mediated by ROS. The divergence of 
ROS-intervened plant processes justifies the wide distribution of ROS generators 
throughout the plant body in different intracellular organelles (e.g. chloroplast, 
mitochondria, peroxisome etc.) or plasma membrane and apoplast (Kar 2015). The 
strict adherence of ROS signaling events to their localization indicates presence of 
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delicate communication systems among different subcellular components giving 
rise to a complex ROS-network (Shapiguzov et al. 2012). Since the basic require-
ments of plant growth i.e. cell divisions (Livanos et al. 2012) as well as cell elonga-
tions (Huang et al. 2019) are found to be regulated by ROS homeostasis, involvement 
of ROS in plant growth and development is inevitable. Parallel to other plant events, 
ROS have been reported to be crucially involved in seed germination starting from 
the very early stage of after-ripening and acceleration of loss of dormancy to the 
weakening of endosperm cap and radicle protrusion (Schopfer et al. 2001; Bailly 
et al. 2008; Müller et al. 2009a; Gomes et al. 2014; Bailly 2019). Concomitantly, 
imbibition of seeds with exogenous ROS (H2O2) promoted germination in many 
species of monocot e.g. Oryza sativa (Hemalatha et al. 2017), Triticum aestivum 
(Wahid et  al. 2007), Hordeum vulgare (Bahin et  al. 2011), Andropogon gerardii 
(Sarath et  al. 2007) and dicot plants e.g. Arabidopsis thaliana (Leymarie et  al. 
2012), Pisum sativum (Barba-Espín et  al. 2011), Vigna radiata (Chaudhuri 
et al. 2013).

As metabolism is nearly stalled in a dry (desiccated) mature seed, enzymatic 
ROS production is greatly reduced and the limited amount of available ROS may 
come from non-enzymatic reactions e.g. lipid peroxidation (El-Maarouf-Bouteau 
and Bailly 2008; Gomes and Garcia 2013). However, in a hydrated germinating 
seed, mitochondria [through respiratory electron transport chain (ETC)] and peroxi-
somes (including specifically, glyoxysomes) are the most active cellular organelles 
involved in ROS production (both O2˙ˉ and H2O2) at high rates (Bailly 2004; 
El-Maarouf-Bouteau and Bailly 2008). Among the enzymatic sources of ROS, 
plasma membrane (PM) NADPH oxidase (NOX) [or respiratory burst oxidase 
homologs (RBOHs); homologs of gp91phox subunit of mammalian NOX complex] is 
the most prominent one which is almost universal in distribution in plants and func-
tions as the prime source of ROS (Sagi and Fluhr 2006). Its importance is even more 
pronounced in skotomorphogenic organs (e.g. seed, root etc) which are devoid of 
photosynthetic electron transport chains (pETC) (operating in chloroplasts; one of 
the most active ROS producers in plants) (Li et al. 2017). NOX produces O2˙ˉ by 
one electron reduction of O2 (Fluhr 2009), which is readily converted to H2O2 either 
spontaneously or by the activity of superoxide dismutase (SOD) enzyme. Treatment 
with DPI (specific NOX inhibitor) results in almost complete inhibition of germina-
tion and axis growth e.g. in Arabidopsis thaliana (Leymarie et  al. 2012), Vigna 
radiata (Singh et al. 2014) and Oryza sativa (Li et al. 2017) highlighting the neces-
sity of NOX-dependent ROS formation for successful completion of germination 
(Hu et al. 2020). Apart from NOX, cell wall located class III peroxidase (Prx) also 
plays key role in regulation of germination as it is the major enzymatic source of 
˙OH radical that relaxes the cell wall by cleaving wall polysaccharides (Schweikert 
et al. 2000; Singh et al. 2015). It is well reported that onset and progress of germina-
tion is accompanied by production of ˙OH radicals (Schopfer et al. 2001; Müller 
et al. 2009a, b; Richards et al. 2015). Accordingly, the level of cellular Prx activity 
reached its peak at the time of axis emergence by rupturing the seed coat, whereas 
treatment with Prx inhibitors viz. salicylhydroxamic acid (SHAM) and ˙OH scaven-
ger (sodium benzoate) suppressed V. radiata germination (Singh et al. 2015). Other 
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sources of ROS that may mediate germination are also being explored. Chen et al. 
(2016) have reported that polyamine oxidase (PAO) regulates O. sativa seed germi-
nation by producing H2O2 and after studying gene expression patterns they have 
identified OsPAO5 as the gene that encodes most of the PAO activity during germi-
nation. Expression and activity of apoplastic germin-like oxalate oxidase (gl-OXO) 
enzyme has been identified in germinating T. aestivum embryo (Caliskan and 
Cuming 1998). The authors suggested that H2O2 originating from gl-OXO activity 
is involved in “cell wall-restructuring” through cross-linking of wall polymers.

Among the different ROS forms, H2O2 appears to be responsible for most of the 
ROS signaling owing to its structural and chemical properties. Unlike O2˙ˉ, 1O2 or 
˙OH, H2O2 is freely diffusible through aquaporins (Mubarakshina and Ivanov 2010; 
Bienert and Chaumont 2014) thereby being able to cross membranes. Thus it can 
accumulate either at apoplast or protoplast and function irrespective of the site of 
production (e.g. mitochondria, peroxisome or NOX). However, O2˙ˉ and ˙OH also 
perform specific functions during germination in close proximity to their origin. 
Various modes of action are involved in ROS-mediated seed germination which are 
spatiotemporally differentiated. The accumulation of O2˙ˉ and H2O2 during after- 
ripening leads to protein carbonylation which has been suggested to underlie alle-
viation of dormancy (Oracz et  al. 2007; Müller et  al. 2009a; Bahin et  al. 2011). 
Dormancy breaking and onset of germination are greatly dependent on the interac-
tions between ROS and phytohormones. Thus, ROS signals are perceived by the 
nucleus and alterations in hormone metabolism take place following modified 
nuclear gene expression patterns. The germination-stimulatory role of H2O2 indeed 
involves promotion of GA biosynthesis and catabolism of ABA leading towards the 
establishment of low ABA/high GA content ratio necessary for germination (Liu 
et al. 2010; Gomes et al. 2014; Bailly 2019). The role of ˙OH in relaxation of cell 
wall by cleaving wall polysaccharides is well established (Schopfer et  al. 2002; 
Liszkay et al. 2004; Müller et al. 2009b). This allows the mechanically weakened 
cell walls (with relaxed tension) to stretch in response to turgor pressure which 
essentially results in cell expansion (Fry 1998; Gomes et al. 2014). ROS are also 
involved in reserve mobilization by mediating oxidative break down of stored poly-
saccharides, DNA, RNA, proteins and fatty acids (Schweikert et al. 2002; Buetler 
et al. 2004; Job et al. 2005) which provides nutrients to the growing embryo. In a 
strictly GA-favored (and ABA-inhibited) manner, ROS carry out programmed cell 
death (PCD) of aleurone layer cells stimulating the release of amylase and protease 
enzymes that facilitates the mobilization of stored materials (Fath et al. 2001, 2002; 
Gomes et al. 2014).
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3.4  Cross-Talk Between Hormone and ROS During 
Seed Germination

Interactions between ROS and phytohormones are well known to underlie a large 
number of plant processes encompassing different growth and stress tolerance 
responses (Baxter et al. 2014; Xia et al. 2015). For instance, inhibition of NOX by 
treatment with dipheneyelne iodoinium (DPI; specific NOX inhibitor) resulted in 
impairment of ABA-induced stomatal closure (Zhang et al. 2001) which was further 
corroborated by obtaining similar effects from Atrboh f single mutant as well as 
Atrboh d/f double mutants (Kwak et  al. 2003; Mignolet-Spruyt et  al. 2016). 
Regulation of plastic root system architecture by H2O2 has been suggested to be 
dependent on modulation of polar auxin transport by H2O2 which results into altera-
tion of auxin accumulation and redistribution (Su et al. 2016). Moreover, heat stress 
specific systemic acquired acclimation (SAA) has been reported to be regulated by 
spatio-temporal interactions between ROS and ABA in Arabidopsis (Suzuki et al. 
2013). Interestingly, proteins (transcription factors, kinases, phosphatases etc) that 
are specifically involved in hormone signaling have been found to act also as ROS 
signaling factors thereby integrating the two different signaling pathways (Mignolet- 
Spruyt et al. 2016; Oracz and Karpiński 2016).

It is evident that seed germination is a complex process which involves intense 
hormonal regulation along with pivotal roles played by ROS. Efforts are being made 
since long to identify any possible cross-talks among the two signaling systems dur-
ing germination (as already found in case of different plant responses) (Oracz and 
Karpiński 2016). As ABA and GA are the primary phytohormones that antagonisti-
cally regulate seed germination, responses of ROS to alteration in ABA/GA balance 
are crucial for alleviation of dormancy and onset of germination. As such, the typi-
cal ROS “burst” in the seed coat and embryo was inhibited by ABA in both seed 
parts (and inhibited germination) whereas GA reversed the inhibitory effect of far- 
red light on ROS production and maintained the ROS level during germination in 
dark (Schopfer et al. 2001). Direct interaction of H2O2 with ABA is greatly studied 
in stomatal closure where ABA induces ROS production and H2O2 stimulates ABA- 
dependent signaling (Zhang et al. 2001; Kwak et al. 2003; Taiz et al. 2015). However, 
on the contrary to stomatal movement regulation, ABA reduces ROS production in 
seeds (especially embryo) and inhibits germination (Ye et  al. 2012) probably by 
activating antioxidant enzymes viz. catalase, ascorbate peroxidase (Fath et al. 2001; 
Xia et  al. 2015). Inhibition of germination under ABA treatment has often been 
found to be reversed/overcome by H2O2 e.g. in Panicum virgatum (Sarath et  al. 
2007), Vigna radiata (Chaudhuri et al. 2013). This can be explained by the findings 
of Liu et al. (2010) that imbibition with H2O2 significantly increases the expression 
of four ABA catabolism genes encoding. ABA 8′-hydroxylase (CYP707A1, 
CYP707A2, CYP707A3, CYP707A4) and promote germination. In addition they 
also showed that treatment with DPI reduces the expression of those genes and 
inhibits germination, suggesting a role of NOX in the process. In Nicotiana taba-
cum plants, H2O2 suppressed the expression of ABA biosynthesis genes encoding 
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9-cis-epoxycarotenoid dioxygenase (NCED1 and NCED3) and promoted CYP707A1 
and CYP707A2 gene expression (Li et al. 2018). Similar effects were obtained on 
application of exogenous GA. Expression of ABA insensitive 3 and 5 [ABI3 and 
ABI5; central ABA signaling components] were significantly downregulated by 
H2O2 and GA whereas DPI and Uniconazole (Uni; GA biosynthesis inhibitor) pro-
moted them (Li et  al. 2018) depicting the synergistic effect of ROS and GA on 
repression of ABA signaling. Confirming the suggested involvement of NOX in 
ABA-dependent signaling in germination, Chaudhuri et  al. (2013) reported that 
NOX activity was indeed repressed under the treatment of ABA and was stimulated 
when seeds were treated with ABA biosynthesis inhibitor (fluridone). Barba-Espín 
et al. (2011) has suggested that H2O2 may impair ABA transport from cotyledons to 
the embryo thereby promoting germination. Interestingly, Ishibashi et  al. (2012) 
reported that H2O2 suppressed the expression and autophosphorylation of an ABA- 
responsive Ser/Thr protein kinase (PKABA) which is involved in inhibition of 
GAmyb expression (Gómez-Cadenas et al. 2001). In turn, reduced expression and 
activity of PKABA results in induction of α-amylase expression and promotes ger-
mination. Thus, the mode of action of H2O2 in antagonizing the ABA-dependent 
germination inhibition appears to correlate with GA signaling pathway. It is indeed 
observed that while ABA suppresses expression of GA biosynthesis genes e.g. 
GA3ox, H2O2 stimulated their expression and rescued germination (Liu et al. 2010).

Interactions between ROS and GA are found in different plant tissues which 
mostly involve the negative regulatory role played by DELLA proteins (Xia et al. 
2015). It is reported by Achard et al. (2008) that DELLA proteins’ content increases 
in ga1-3 (GA deficient) mutant which promotes the expression and activity of SOD 
and catalase enzymes, resulting in inhibition of ROS accumulation. Extensive 
involvement of ROS in enhancement of GA biosynthesis and signaling during ger-
mination has also been reported (Leymarie et al. 2012; Xia et al. 2015; Li et al. 
2018). During germination in N. tabacum, H2O2 promoted the expression of GA 
insensitive dwarf protein (GID1 and GID2; a receptor of GA signaling) which 
would facilitate the formation of GA-GID-DELLA complex and would release 
transcription factors from DELLA-mediated suppression (Xia et al. 2015; Li et al. 
2018). The GA-mediated PCD of aleurone cells (leading to mobilization of storage 
reserve) involves key roles played by ROS e.g. damage to membrane lipids (result-
ing in loss of membrane integrity), DNA and cellular proteins (Bethke and Jones 
2001; Fath et  al. 2001). GA reduces the rate of activity of ROS-metabolizing 
enzymes e.g. catalase, ascorbate peroxidase, SOD and, in effect, makes the aleurone 
layer cells progressively more sensitive to H2O2 which accelerates PCD and pro-
motes germination. Stimulation of H2O2 production has also been found to be 
induced by GA in wheat aleurone cells (Wu et al. 2014). Conforming to this, inhibi-
tion of germination under treatment of GA biosynthesis inhibitor (paclobutrazole, 
PAC) was counteracted and reversed by H2O2 in Vigna radiata (Chaudhuri et al. 
2013). On the other hand, imbibition with H2O2 enhanced the transcription level of 
five GA biosynthesis genes viz.GA20ox1, GA20ox2, GA20ox3 (encoding GA 
20-oxidase enzyme) and GA3ox1, GA3ox2 (encoding GA 3-oxidase enzyme) dur-
ing early seed germination (Liu et al. 2010; Li et al. 2018). Nonetheless, reduced 

A. Majumdar and R. K. Kar



75

expression of GA catabolism gene viz.GA2ox3 (encoding GA 2-oxidase enzyme) 
was inflicted by H2O2 treatment (Bahin et al. 2011). Interestingly, ABA suppressed 
the expression of GA3ox genes. In an ABA catabolism mutant (cyp707a2), GA3ox 
expression was greatly reduced whereas in its overexpression line i.e. CYP707A2-OE, 
increased level GA3ox expression was obtained. Although treatment with DPI 
reduced the expression of all the five GA biosynthesis genes, exogenous H2O2 was 
able to successfully reverse the DPI-mediated reduction in gene expression (Liu 
et al. 2010). Different combinations of treatments were utilized by Li et al. (2018) 
and it was found that H2O2 + Uni and GA + DPI could overcome the inhibition of 
germination caused by individual treatments of DPI and Uni. From the inhibitory 
role of DPI it can be assumed that NOX is involved in GA signaling during germina-
tion. Corroborating to the proposal, Chaudhuri et  al. (2013) reported that in the 
germinated axes of PAC treated seeds, reduction in NOX activity were detected in 
native PAGE assay indicating the enzyme’s positive involvement in GA signaling. 
Isocitrate lyase (ICL), a key enzyme of glyoxylate cycle that catalyzes irreversible 
aldol cleavage of isocitrate to glyoxylate and succinate, enhances mobilization of 
storage during germination. Treatment with DPI or Uni led to inhibition of ICL 
expression as well as activity which were efficiently counteracted by H2O2 and GA 
(Li et al. 2018).

Interestingly, expression of two GA-regulated proteins which are involved in cell 
wall loosening and cell expansion viz. xyloglucan endotransglucosylase (XTH5) 
and expansin (EXP2, EXP11) has been found to be upregulated by H2O2 (Yamauchi 
et al. 2004; Thiel et al. 2008; Liu et al. 2010; Bahin et al. 2011). Both the genes are 
down-regulated under DPI and c-PTIO [2-(4-carboxyphenyl)-4,4,5,5- 
tetramethylimidazoline- 1-oxyl-3-oxide; NO scavenger] treatments (Liu et al. 2010). 
This clearly depicts the interaction or co-activity among GA and NOX-produced 
ROS in the cell elongation process leading to seed germination. Another ROS form, 
˙OH radical mediates cell wall relaxation by cleaving wall polysaccharides e.g. pec-
tin (Airianah et al. 2016). The ˙OH radical can be important for mediation of germi-
nation as it can weaken the endosperm cap which would result in less force being 
needed for the radicle to protrude through the cap (Müller et al. 2009b). Indeed, 
Schopfer et al. (2001) have reported an increase in ˙OH production in seed coat and 
embryo co-occurring during radish seed germination. The DPI treatment-induced 
reduction in ˙OH production is mimicked by ABA, whereas H2O2, GA and ethylene 
promotes ˙OH radical production and counteracts ABA signaling (Graeber et  al. 
2010; Barba-Espín et al. 2011; Richards et al. 2015).

Apart from ABA and GA, ethylene also plays important role in germination. 
Involvement of ethylene in germination is based on its cross-talks with ABA and 
GA (Oracz et al. 2008, 2009; Linkies et al. 2009). When seeds were imbibed with 
GA and AgNO3 (ethylene action inhibitor), germination could commence, while a 
combined treatment of PAC and ethrel could not restore germination depicting that 
ethylene alone cannot signal germination when GA is absent (Chaudhuri et  al. 
2013). Supportive molecular evidences show that GA could induce germination 
even in etr1 mutant seeds; however ethylene was unable to do the same in gib-1 
mutant (Groot and Karssen 1987; Bleecker et al. 1988). It has been reported that 
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ethylene counteracts ABA effects and promotes germination (Kucera et al. 2005). 
On the other hand, interaction of ethylene with ROS has also been observed during 
seed germination indicating towards a common signaling system involving ROS, 
ethylene and GA. Treatment with ethylene biosynthesis inhibitor repressed germi-
nation, which could be reversed when supplemented with exogenous H2O2 
(Chaudhuri et al. 2013). However, when germination was stalled under treatment of 
propyl gallate (PG; general ROS scavenger), addition of ethylene was little effective 
(Chaudhuri and Kar 2008). In Helianthus annus, ethylene and cyanide release the 
seeds from dormancy and the mechanism involves cyanide-dependent stimulation 
of ethylene response factor1 (ERF1) expression which was sensitive to DPI treat-
ment (Corbineau et al. 1990; Oracz et al. 2008, 2009). The cyanide-dependent dor-
mancy alleviation was found to be mimicked by ROS generators e.g. MV (methyl 
viologen) and menadione and was counteracted by ROS scavengers e.g. Tiron (O2˙ˉ 
scavenger), DMTU (H2O2 scavenger), sodium benzoate (˙OH scavenger), ascorbic 
acid. Moreover, MV induced the expression of ETR2 and ERF1 genes significantly 
(Oracz et al. 2008, 2009). Supporting results were reported by Ishibashi et al. (2013) 
where a cross-talk among ROS and ethylene signaling pathways was reported dur-
ing germination in Glycine max. Treatment with N-acetylcysteine (NAC, an antioxi-
dant) counteracted the effects of ROS and suppressed germination. In addition, 
NAC treatment lowered cellular ethylene content by reducing the expression of 
ACC synthase genes viz. GmACS2e and GmACS6a. Addition of ethophen (which is 
converted to ethylene) reverses the effects of NAC on germination. Interestingly, the 
expression of ACS genes have been found to be promoted by H2O2 in both Vigna 
radiata (VrACS1 and VrACS6; Song et  al. 2007) and Glycine max (GmACS6a; 
Ishibashi et al. 2013) during germination. Therefore it is evident that coordinated 
action of ROS and ethylene is underlying seed germination process.

3.5  ROS – PM H+-ATPase – Hormones: Extension 
of the Signaling Network

Being an electrogenic proton (H+) pump in nature, PM H+-ATPase is primarily 
responsible for conduction of H+ from cytosol across the PM to the apoplastic space 
utilizing the energy released from hydrolysis of ATP. The trans-membrane electro-
chemical gradient (negative at cytosolic side, positive at apoplastic side) arising 
from active H+-transport along with tight regulation of pH homeostasis (high at 
intracellular and low at extracellular sides) is instrumental in the apoplastic events 
including the activity of several enzymes and proteins like expansin involved in cell 
wall relaxation (Falhof et al. 2016). Besides, they also provide driving force for ion 
and metabolites transport (Palmgren 2001; Gévaudant et al. 2007). Consequently, 
involvement of PM H+-ATPase in several plant processes is known for decades 
which includes, but not limited to, dormancy alleviation and seed germination (De 
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Bont et  al. 2019), organ growth (Janicka-Russak 2011), stomatal responses 
(Kinoshita et al. 2003) and stress tolerance (Zhang et al. 2017).

One of the most important growth promoting roles of PM H+-ATPase is its ability 
to enable cell elongation mediated by cell wall loosening (Hager 2003; Janicka- 
Russak 2011). As germination is defined by radicle protrusion through seed coat 
which mostly depends on embryo cell elongation rather than cell division (Gimeno- 
Gilles et al. 2009; Sliwinska et al. 2009), PM H+-ATPase activity is indispensable 
for the process (Obroucheva 2017; Obroucheva et al. 2018). Interestingly, selective 
localization of the enzyme at certain regions of embryo has been observed during 
germination. These regions are predominantly involved in either secondary nutrient 
transport or cell elongation (Enríquez-Arredondo et al. 2005). Analyzing the effects 
of Vanadate (specific PM H+-ATPase inhibitor) and fusicoccin (a toxin that activates 
PM H+-ATPase) treatments on seed germination, De Bont et al. (2019) suggested 
crucial involvement of PM H+-ATPase in dormancy alleviation. Reduced germina-
tion (and root growth thereafter) of aged seeds has been co-related with inhibition 
of PM H+-ATPase activity too (Sveinsdóttir et al. 2009). Tissue-specific expression 
patterns of different isoforms of the enzyme have been studied and AHA10 
(Arabidopsis PM H+-ATPase 10) has been found to be expressing exclusively in 
developing seeds (in the integument tissues surrounding the embryo sac) (Harper 
et al. 1994). Disruption of AHA10 gene resulted in severe reduction of production 
of proanthocyanidin in the seed coat endothelium in Arabidopsis (Baxter et  al. 
2005). However, AHA1 an AHA2 are expressed almost in every tissue and organs 
demonstrating the importance of the enzyme in different plant processes (Janicka- 
Russak 2011). Overexpression of PM H+-ATPase gene commonly results in 
enhancement of the enzyme activity. Gévaudant et al. (2007) selectively excluded 
last 103 amino acids (corresponding to the C-terminal auto inhibitory domain) from 
NpPMA4 (Nicotiana plumbaginifolia PM H+-ATPase 4) and created a constitu-
tively active ΔPMA4. Under salt stress, overexpression of the ΔPMA4 (ectopically) 
in tobacco (N. tabacum) plants exhibited higher seed germination in contrast to the 
wild type PMA4, further corroborating the efficiency of H+-ATPase in promotion of 
germination.

Although operating through different modes of action, both apoplastic ROS and 
PM H+-ATPase enable cell elongation by loosening/relaxing the cell wall thereby 
playing pivotal roles in early seed germination (radicle emergence; depends on cell 
elongation only). The relationship between ROS and PM H+-ATPase is a matter of 
curiosity and significance and is being studied under different physiological condi-
tions. Recently, involvement of PM H+-ATPase in a functional synchronization with 
NOX (initiator of apoplastic ROS cascade) has recently been identified during root 
growth in Vigna radiata (Majumdar and Kar 2018). This is in complete agreement 
with earlier studies exhibiting positive interplays between these enzymes. PM H+-
ATPase activity was promoted, under different physiological conditions, by applica-
tion of exogenous H2O2 and was repressed under the treatment of NOX inhibitor 
e.g. DPI or ROS scavengers (Zhang et al. 2007; Li et al. 2011; Zhao et al. 2015). 
Conversely, inhibition of PM H+-ATPase was found to be detrimental for NOX 
activity (Majumdar and Kar 2018). Moreover, H2O2 can promote activity as well as 
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gene expression of PM H+-ATPase (Janicka-Russak et  al. 2012) and NOX (via 
MAPK cascade pathway) (Yoshioka et al. 2016; Liu and He 2017; Hu et al. 2020). 
Since Ca+2 can activate both NOX (Sagi and Fluhr 2006; Kurusu et al. 2015) and 
PM H+-ATPase (Lang et al. 2014), threshold [Ca+2]cyt also serves as a potent media-
tor, apart from H2O2, of the enzymatic loop (Majumdar and Kar 2018). The 
hyperpolarization- activated Ca+2 channels (HACC) are crucial gates for Ca+2 entries 
into the cytosol. By definition HACCs require membrane hyperpolarization caused 
by PM H+-ATPase activity, whereas their activation depends on H2O2 (Michelet and 
Boutry 1995; Demidchik et al. 2003, 2007; Foreman et al. 2003; Mori and Schroeder 
2004). Apparently, Ca+2influxes across PM into the cytosol are regulated by both 
ROS and PM H+-ATPase. Therefore, it can be presumed that during germination, 
PM H+-ATPase and NOX work co-operatively in a Ca+2-regulated manner and 
maintain PM electrical (charge) balance while mediating cell expansion. 
Interestingly, enzymatic production of apoplastic H2O2 by SOD is dependent on 
activities of both NOX and PM H+-ATPase simultaneously as the products of the 
latter enzymes (O2˙ˉ and H+, respectively) are substrates of SOD (Majumdar and 
Kar 2019). Thus a feed-forward relationship is established among the three enzymes 
as H2O2, being produced by SOD, activates both NOX and PM H+-ATPase either 
directly or through facilitating Ca+2 entry into the cell. Furthermore, cell wall located 
class III peroxidase (Prx) utilizes apoplastic H2O2 as substrate and produces ˙OH 
radical which cleaves wall polysachharides and relaxes cell wall (Schweikert et al. 
2000; Liszkay et al. 2004; Müller et al. 2009b; Airianah et al. 2016). It has been 
found that H2O2 coming from the NOX-PM H+-ATPase-SOD loop is crucial for Prx 
activity since inactivation of the enzymatic loop inhibits Prx too (Majumdar and Kar 
2019). Therefore, it appears that PM H+-ATPase is necessary for production of ˙OH 
radical. Additional support comes from Liszkay et al. (2004) who demonstrated that 
fusicoccin (a stimulator of PM H+-ATPase) could increase the production of ˙OH 
radical in Zea mays root.

On the other hand, varying relationships of PM H+-ATPase with different phyto-
hormones have been documented time and again. Strikingly, the responses have 
been found to be location (tissue/organ) or condition (normal growth/stressful) 
dependent. The best example of such is ABA-PM H+-ATPase. ABA-induced inhibi-
tion of PM H+-ATPase in guard cells has been extensively reported (Taiz et  al. 
2015). In Arabidopsis, ABA induces the attachment of VAMP711 (vesicle- 
associated membrane protein; a R-SNARE family protein) to the C-terminal auto- 
inhibitory domain of AHA1 and AHA2 and inhibits the enzyme (Xue et al. 2018). 
On the contrary, ABA has been found to stimulate PM H+-ATPase in developing 
apple fruit, especially in phloem cells (Peng et al. 2003). Moreover, a specific CDPK 
viz. ABA-stimulated calcium-dependent protein kinase (ACPK1; ABA stimulates 
autophosphorylation and kinase activity) is identified in grape berry mesocarp, 
which acts on the C-terminal domain of PM H+-ATPase and activates the enzyme by 
phosphorylation (Yu et  al. 2006). However during germination, ABA appears to 
inhibit PM H+-ATPase activity. Gimeno-Gilles et al. (2009) reported that ABA tar-
gets the process of cell wall loosening to restrict germination and inhibits the 
expression of several genes that are crucial for wall loosening (and resultant cell 
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expansion) e.g. alpha-expansin, extensin, xyloglucan endotransglycosylase, cellu-
lose synthase etc. Concomitantly, during seed germination in Arabidopsis, promi-
nent non-transcriptional inhibition of PM H+-ATPase (AHA2) was induced by ABA 
via activation of SnRK2.2 kinase which phosphorylates unidentified amino acids at 
C-terminal domain of the enzyme (Planes et al. 2015). On the other hand, IAA- 
induced activation of PM H+-ATPase is known for long (Rayle and Cleland 1992; 
Hager 2003) and it is crucial for elongation of plant cells following increase in 
plastic extensibility of cell wall. IAA has been reported to stimulate PM H+-ATPase 
activity either by inducing phosphorylation of Thr947 (Chen et al. 2010; Takahashi 
et al. 2012; Haruta et al. 2015) or by indirectly inhibiting dephosphorylation of the 
enzyme [by inhibiting protein phosphatases (PP2C-D)]. IAA accelerates gene 
expression of SAUR19 (Small Auxin Up-RNA) which, in turn, interacts and inhibits 
PP2C-D (Spartz et al. 2014). Auxin up regulates PM H+-ATPase gene expression 
and increases exocytosis of the enzyme too (Hager et  al. 1991; Du et  al. 2020), 
which eventually results in an increased density of the enzyme at the PM (Xia et al. 
2019). Although GA increased phosphorylation of the conserved Thr947, thereby 
promoting AHA1 and AHA2 activity, jasmonic acid (JA) and kinetin (cytokinin) 
significantly dephosphorylated the site (Chen et al. 2010). Additionally in Solanum 
tuberosum stolons, GA treatment was found to induce expression of PHA1 and 
PHA2 (potato PM H+-ATPase) (Stritzler et al. 2017). While exogenous polyamines 
(spermine and spermidine) have been found to promote 14-3-3 binding to PM H+-
ATPase thereby increasing the enzyme activity (nearly two-fold), treatment with 
polyamine synthesis inhibitor reduced the enzyme’s activity (Reggiani et al. 1992; 
Garufi et al. 2007). The role of ethylene in promotion of H+-efflux and activation of 
expansin protein leading to enhanced petiole elongation in completely submerged 
Rumex palustris (Vreeburg et al. 2005) may be considered as its stimulatory effect 
on PM H+-ATPase. In agreement to this, Waters et  al. (2007) have reported that 
ethylene induces enhancement of PM H+-ATPase (CsHA1) gene expression in 
Fe-deficient Cucumis sativus plants, whereas treatments with ethylene inhibitors 
[Co and AOA (aminooxyacetic acid)] resulted in inhibition of the gene’s expression 
and reduced extracellular acidification.

Considering the large cross-talks between ROS/hormones, ROS/PM H+-ATPase 
and hormones/PM H+-ATPase, it seems justifiable to presume a common signaling 
system working among them that mediates seed germination. Conforming to the 
hypothesis, De Bont et al. (2019) have suggested that the observed dormancy alle-
viation under treatments of ethylene and MV (ROS generator) may involve promo-
tion of PM H+-ATPase activity (as indicated by membrane hyperpolarization) by 
both the agents. Delayed germination under treatment of ROS scavengers was 
accompanied by membrane depolarization indicating inhibition of PM H+-ATPase 
activity. Thus it is evident that a close relationship of PM H+-ATPase with ROS and 
phytohormones exists and regulation of seed germination process is governed by 
the signaling system.
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3.6  Reactive Nitrogen Species (RNS): Another Potential 
Candidate to Play for Signaling

Apart from ROS, different other types of free radicals are also generated in living 
systems which can be broadly classified as reactive nitrogen species (RNS), reactive 
chlorine species (RCS), reactive bromine species (RBS) etc. Among these, RNS 
have been reported to play vast signaling roles in different aspects of plant life under 
both physiological and adverse conditions (Gupta and Igamberdiev 2015). As a col-
lective term, RNS incorporates both free radicals [e.g. nitric oxide (˙NO), nitrogen 
dioxide (˙NO2), nitrate radical (˙NO3)] and non-radicals [e.g. nitrous acid (HNO2), 
nitrosyl cation (NO+), nitroxyl anion (NO−) etc] (Halliwell and Gutteridge 2015). 
Involvement of ˙NO in cellular signaling has been identified long back (Palmer 
et al. 1987; Laxalt et al. 1997) and extensive research is being carried out since then 
to further explore its functions and modes of operation. Consequently, ˙NO is now 
established to mediate diverse plant processes ranging from seed germination to 
stress tolerance (Šírová et al. 2011; Hancock and Neill 2019; Kohli et al. 2019).

In germinating seeds, ˙NO may be produced by both enzymatic [e.g. nitrate 
reductase (NR) and nitric oxide synthase (NOS)] and non-enzymatic sources 
(Corpas et al. 2009; Moreau et al. 2010; Šírová et al. 2011). It has been observed 
that treatment of seeds with sodium nitroprusside (SNP; a potent NO˙ donor) pro-
motes early seed germination in Lupinus luteus. Moreover, SNP could counteract 
the negative effects of heavy metals (e.g. Pb and Cd) and NaCl and reinstate germi-
nation (Kopyra and Gwóźdź 2003). Conforming to this, Bethke et al. (2004, 2006a) 
have reported that exogenous application of NO˙ donors break dormancy of 
Arabidopsis seeds. On the other hand, treatment with c-PTIO [˙NO scavenger; 
2-[4-carboxyphenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] enhanced 
seed dormancy (Liu et al. 2010). The signalling process through which ˙NO regu-
lates germination is complex and involves cross-talks with hormones and ROS. In 
different studies, SNP promoted germination by enhancing the positive effect of 
norflurazon (ABA synthesis inhibitor) while cPTIO negated the effects of fluridone 
and prevented germination (Bethke et al. 2006b; Piterková et al. 2012; Arc et al. 
2013). ˙NO antagonizes the ABA-induced dormancy maintenance by promoting 
post-translational degradation of ABI5 (ABA insensitive 5) protein through 
S-nitrosylation of Cys153 residue (Albertos et al. 2015). As found in case of H2O2, 
treatment with SNP also induces the expression of ABA catabolism gene CYP707A2. 
Interestingly, SNP could reverse the DPI-induced reduction of gene expression; 
however, H2O2 was unable to overcome the inhibitory effects of cPTIO (Liu et al. 
2010). On the other hand, expressions of GA biosynthesis genes (GA20ox and 
GA3ox) are enhanced by SNP and down-regulated by cPTIO. While SNP reversed 
the down-regulation induced by DPI, H2O2 was able to counteract the negative 
effects of cPTIO and enhance GA synthesis leading to germination. Exogenous 
H2O2 could also reverse the negative effects of cPTIO on expressions of two 
GA-regulated genes viz. XTH5 and EXP2 which are involved in cell wall loosening 
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and cell expansion (Liu et  al. 2010). Thus, it is evident that seed germination 
involves intrinsic cross-talks among ROS, ˙NO (or RNS), and hormones.

Interestingly, ̇ NO has been found to be involved in regulation of ion homeostasis 
in a ethylene-dependent manner, which is mediated through the stimulation of PM 
H+-ATPase activity (Wang et al. 2009). While NaCl repressed PM H+-ATPase activ-
ity in Arabidopsis callus both individually as well as in combined treatments with 
AOA [aminooxyacetic acid; ethylene biosynthesis inhibitor] and L-NNA [Nω-nitro- 
L-arginin; nitric oxide synthase (NOS) inhibitor], the inhibitions could be overcome 
with treatments of ACC (1-aminocyclopropane-1-carboxylic acid; an ethylene pre-
cursor) and SNP.  Nonetheless, the SNP-mediated stimulation of PM H+-ATPase 
was abolished by both PTIO [˙NO scavenger; 2-Phenyl-4,4,5,5- 
tetramethylimidazoline- 1-oxyl 3-oxide] and AOA treatments, depicting an interplay 
between ˙NO and ethylene that precedes PM H+-ATPase promotion. Further, Zhang 
et al. (2007) have reported that SNP-induced promotion of PM H+-ATPase activity 
in Populas euphratica callus could be eliminated by DPI whereas the positive effect 
of H2O2 on PM H+-ATPase was not reversed under treatments of NMMA (NG- 
monomethyl- L-Arginine acetate; NOS inhibitor) and PTIO. Thus, it appears that 
˙NO promotes PM H+-ATPase activity through ethylene and (NOX-dependent) 
ROS homeostasis. Since PM H+-ATPase is closely associated with ROS/hormone 
cross-talks that regulate seed germination, it can be hypothesized that a functional 
ROS  – ˙NO  – PM H+-ATPase  – hormone signalling network is governing the 
process.

3.7  Conclusion

Seeds, if otherwise not in a dormant state, experience the first spell of growth upon 
germination (under a set of congenial environmental conditions) by radical protru-
sion as dictated by subtle levels of hormonal combination mainly dominated by 
GA. Ethylene has also been demonstrated to promote the process while ABA is 
recognized for inhibition of germination. These hormones exert their action through 
specific signaling pathways with purported crosstalk. ROS (generated through 
NOX-dependent apoplastic cascade) integrates with such signaling network along 
with a transmembrane H+ gradient inflicted by PM H+-ATPase. NO˙ modulates GA/
ABA ratio and PM H+-ATPase activity in a ROS and ethylene-dependent way and 
thereby regulates seed germination process. A working model portraying the com-
bined mode of action of hormones, ROS, ˙NO and PM H+-ATPase during seed 
germination has been depicted in the Fig. 3.1.
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Fig. 3.1 An integrated working model demonstrating the cross-talks between hormonal signaling 
network, ROS homeostasis and PM H+-ATPase activity during seed germination. NOX-dependent 
ROS production cascade is the major source of apoplastic ROS in plants. The O2˙ˉ being generated 
from NOX activity is readily converted (disproportionated) to H2O2 either by spontaneous reac-
tions or by SOD activity. Co-activity of PM H+-ATPase with NOX ensures adequate supply of H+ 
at the apoplast, which is essential for SOD activity. De novo generated H2O2 is utilized by class III 
Prx enzyme and is converted to ˙OH radical that cleaves wall polysaccharides thereby mediating 
cell wall relaxation. Other apoplastic enzymes viz. polyamine oxidase and oxalate oxidase also 
produce H2O2 during germination. H2O2, from all the sources, diffuses across the plasma mem-
brane and accumulates into cytosol. Mitochondrial respiratory electron transport chain (ETC) and 
peroxisome are the primary intracellular sources of ROS (both O2˙ˉ and H2O2) in germinating 
seeds and they contribute effectively in building a cytosolic ROS pool. PM H+-ATPase mediated 
hyperpolarization of plasma membrane and H2O2 together activate HACC channels that facilitate 
Ca+2influxes into cytosol from apoplast. Threshold [Ca+2]cyt, in turn, stimulates both the enzymes 
either by directly binding to the EF-hand motifs (of NOX) or by phosphorylating different amino 
acids. The cytosolic ROS signal is perceived by nucleus and alterations in gene expression pattern 
take place. ROS specifically up-regulate GA synthesis and ABA catabolism genes whereas down- 
regulate ABA synthesis and GA catabolism genes. Thus, a low ABA/high GA concentration ratio 
is established which stimulates germination. While ABA-induced inhibition of NOX is reduced in 
this condition, high GA concentration activates NOX and simultaneously deactivates antioxidant 
enzymes. Ethylene synthesis and response genes are also up-regulated by ROS. In a GA-dependent 
manner, ethylene promotes NOX activity and increases ROS production. ROS mobilize the storage 
reserves by breaking down polysaccharides, DNA, RNA, proteins and fatty acids and facilitating 
the release of amylase and protease enzymes and, in effect, promote seed germination
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